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Introduction 

Trauma-induced changes in the red blood cells (RBC) contribute to the reduction of 
blood flow to distant organs. Complement activation has been implicated to mediate early 
posttraumatic inflammatory response, which leads to the trauma-induced sequelae and 
adverse outcome. 

Erythrocytes (red blood cells, red cells) are the most abundant specialized cells in the 
human body. During the life cycle of about 120 days, erythrocytes have to maintain their 
biconcave shape despite regularly passing through capillaries with diameters (4.5-5µm) 
about half their size (7.4-8µm) 1. Erythrocyte are able to do this, because their membrane 
is highly elastic, being about 100 times softer than a latex membrane of comparable 
thickness, and yet strong enough to undergo rapid and significant shear stresses without 
fragmentation 2. Erythrocyte membrane has there major components: 1) membrane 
proteins, that are either transmembrane or attached to the plasma membrane through GPI- 
or lipid-anchors (glycophorins, CD47, CR1, band 3, CD55, CD59, flotillin, stomatin etc.) 
2) skeletal proteins, located below the plasma membrane, conferring the erythrocyte its
specific biconcave shape (spectrin, protein 4.1R, actin) and 3) anchoring proteins, such 
as ankyrin, tropomyosin, tropomodulin, protein 4.2, adducin, dematin, that connect the 
membrane with the skeleton beneath, by linking the cytosolic domain of band 3 and 
glycophorin C with spectrin skeleton 3. More recently, adducin and dematin have also 
been implicated in linking plasma membrane protein Glut-1 (glucose transporter-1) to 
spectrin 4. Apart from actin, all skeleton and anchoring proteins are phospho-proteins. 
Importantly phosphorylation status of several skeletal proteins (adducin, ß-spectrin, 
protein 4.1) was shown to be altered in pathological situations 5-7 8. Spectrin tetramers 
form a hexagonal network (corrals) connected in junctional complexes by protein band 
4.1R, adducin (α and β), dematin, tropomodulin and short actin protofilaments  9,10. 
These are dynamic micro-domains in erythrocyte membrane that depend on the 
phosphorylation status of skeletal proteins (see above) and confine the lateral diffusion of 
transmembrane proteins by slowing down their movement by forcing them to “hop” from 
one corral to another 11. We have recently shown that complement-mediated increased 
confinement by spectrin skeleton of complement regulatory protein CD55 can adversely 
affect red cell biological functions 12. 

Our group and others have shown that CR1 is part of the membrane-bound complement 
regulatory protein family and is the receptor for all complement opsonins: C3b, C4b, C1q 
and MBL 13-19. CR1 along with soluble factor H, control complement activation by 
degrading C3b to C3d and C3dg. Importantly, most mammals, notably rodents, do not 
express CR1 and do not use erythrocytes for binding and transporting complement 
fragments but rather use platelet-adherent factor H to bind immune complexes, which 
then will be removed along with the carrying platelet, by macrophages in the liver and 
spleen. Only humans have a transmembrane form of CR1, which makes the human 
clearance system and the red cell bound complement regulatory system both unique and 
difficult to model in rodents. We have shown that upon ligation by complement fragments, 
CR1 actively clusters on the surface of red cells and interacts with a newly described 
protein phosphatase, FAP-120. The importance of CR1 presence on stored red cells up 
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until the moment of transfusion is underscored by the significant improvement (over 2 
times) of the half-life of human red cells transfused in mice that expressed high titers of 
anti- human red cells antibodies when soluble CR1 (sCR1) was present along with 
transfused cells. In addition, the levels of complement fragments deposited on red cells 
were over 100 times below those of the control mice that were not treated with sCR121.  
 
Erythrocyte deformability or elasticity represents the ability of erythrocytes to change 
their shape in response to an external force and then to return to the original biconcave 
shape once the force ceases to act upon them. Erythrocyte membrane deformability is one 
of the most important rheological factors for controlling microcirculation in organs in 
both normal and ischemic situations 22-24. The dynamic, energy-dependent linkage 
between the membrane and the skeleton is paramount for the ability of erythrocytes to 
squeeze through capillaries 25,26 27. During blood storage red cell membrane deformability 
is progressively lost 28-31.  
 
Reactive oxygen species (ROS) represent a collection of molecules or ions formed by the 
incomplete one-electron reduction of oxygen. This category includes: singlet oxygen; 
superoxides; peroxides; hydroxyl radical, nitric oxide and hypochlorous acid. Depending 
on the amount generated, reactive oxygen species can either: 1) signal in a variety of 
cellular processes functioning as mediators or 2) can have a deleterious effect by 
interacting with a variety of easily oxidizable cellular targets such DNA (mostly 
deoxyguanosine), proteins, cholesterol and relevant for our proposed studies, with nitric 
oxide to generate peroxynitrites 32. Once generated either intracellulary or extra-cellularly, 
ROS will affect the red cell membrane significantly decreasing its deformability 33-35. 
 
Red blood cells in trauma patients travel through capillaries with difficulty and display 
poor gas exchange rate and complement fragments deposited on their surface represents 
the main culprit. We hypothesize that the activated complement fragments deposit on 
RBC surface and alters their ability to pass through capillaries and exchange gases. This 
study aims to determine whether complement activation affects erythrocyte physiology in 
patients with trauma. To understand red cell dysfunction mediated by complement 
activation, we used both whole RBCs and sera from trauma patients and compared them 
with the controls.  

Body 
 
The clinical significance of trauma cannot be underestimated with over 10 million car 
accidents occurring and over 35 thousand people dying each year in the U.S. Trauma 
resulting from accidents or unintentional injuries is the first leading cause of death for 
those under 50 years old and accounts for one out of about every 20 deaths in the U.S. 
  
Although trauma usually involves a certain anatomical injury involving extremities or the 
torso and is followed by obvious pathophysiological events usually linked to blood loss, 
it is invariably associated with manifestations from organs not directly affected by injury. 
The origin of these secondary manifestations is poorly understood. There is information 
suggesting the presence of an acute inflammatory response in patients experiencing 
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trauma.  Specifically, there is evidence that complement system is activated and mediates 
early post-traumatic inflammatory response. In addition, the levels of proinflammatory 
cytokines, including TNF-á, IL-1 and IL-6 are increased in trauma. It is suggested that 
complement activation and proinflammatory cytokine storm occurring in patients with 
trauma collectively choreograph systemic inflammatory response syndrome associated 
with acute respiratory distress syndrome and multiple organ failure.  

In other situations where complement is profusely activated, such as in systemic lupus 
erythematosus (SLE), complement fragments deposit on the surface of red blood cells 
(RBC), which limits their deformability while promoting nitric oxide (NO) production. It 
has been reported that RBC from patients suffering from hemorrhagic shock displays 
reduced deformability, show altered morphological appearance, and contribute to the 
reduction of blood flow to distant organs.  

Based on the evolving studies, we hypothesized that complement activation affects RBC 
function in trauma patients. In this report we demonstrate that complement becomes 
activated in trauma patients and split products are deposited on the surface of RBC 
limiting their ability to pass through capillary-size microchannels and increasing their 
capacity to produce NO.  Our findings suggest that the inhibition of complement can 
serve as an adjunct treatment in trauma patients.  

Key Research Accomplishments 

1. Increased C4d deposition on red blood cell (RBC) in Trauma Patients

Figure 1. Increased 
C4d deposition on 
the surface of 
membrane of RBCs 
from trauma. A, 
Deposition of C4d 
on the surface of 
RBCs from trauma 
patients and healthy 
donors was
measured by flow 

cytometry. 
Representative of 
experiments is 
shown. B, Data of 
C4d deposition on 
RBCs from all 
samples were 

expressed as mean fluorescence intensity, and cumulative data from trauma patients (n = 
40) or normal healthy donors (n = 17) are shown as box plots. Each box shows the 25th
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and 75th percentiles. Lines outside the boxes show the lowest and the highest values. 
Lines inside the boxes show the median. C, Serum levels of iC3b fragments from trauma 
patients (n = 27) and from normal healthy donors (n = 12) were assayed as a measure of 
activation of complement. Horizontal lines indicate the median. 

2. Trauma sera promote C4d deposition on RBC membranes.

Figure 2. Increased 
C4d deposition on 
healthy RBC 

membranes 
incubated with 
trauma sera. A, 
Deposition of C4d 
on the surface of 
healthy RBCs (type 
O, Rh negative) 
incubated with sera 
from trauma patients 
or healthy donors 
was measured by 
flow cytometry. 
Representative data 
are shown. B, Data 
of C4d deposition on 

RBCs from all samples were expressed as mean fluorescence intensity, and cumulative 
data from trauma patients (n = 10) or healthy donors (n = 6) are shown as box plots. Each 
box shows the 25th and 75th percentiles. Lines outside the boxes show the lowest and the 
highest values. Lines inside the boxes show the median. C, Deposition of C4d on the 
surface of healthy RBCs (type O, Rh negative) incubated with sera from trauma patients 
with or without 10 mM EDTA. Representative data are shown. 

3. Trauma sera decrease RBC membrane deformability.

 Figure 3.

ormability after 

 Decreased 
RBC membrane 
def
incubation with 
trauma sera. A, A 
composite series of 
images illustrating the 
passage of a single 
RBC through a 

capillary-size 
microchannel of the 
two-dimensional filter 
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device. B, Healthy universal donor’s (type O, Rh negative) RBCs 
deformability were measured by using the two-dimensional filter device after incubation 

. Phosphorylation status of band 3 in RBCs incubated with trauma sera. 

Figure 4. Phosphorylation status of 

band 3 

 h

. Sera from trauma patients trigger Ca++ influx in RBCs from healthy donors 

with sera from trauma patients or healthy donors. Decreased deformability of each RBC 
was associated with increased transit time (i.e., the time it took the cell to pass through 
the capillary microchannels of twodimensional filter). Data are shown as dot blots of all 
experiments with each circle showing the passage time for one RBC. Horizontal lines 
show the mean. Representative data are shown. C, Cumulative data from trauma patients 
(n = 6) or healthy donors (n = 6) are shown. Data are expressed as box plots. Each box 
shows the 25th and 75th percentiles. Lines outside the boxes show the lowest and the 
highest values. Lines inside the boxes show the median. 
 
4
 

band 3 in RBCs incubated with 
trauma sera. Phosphorylation of 
in healthy RBCs (type O, Rh negative) 
measured by flow cytometry after 
incubation with sera from trauma 
patients or healthy donors, using eosin-
5-maleimide staining. Band 3 
phosphorylation was expressed as 
mean fluorescence intensity of eosin-
5-maleimide fluorescence, and 
ealthy donors (n = 8) are shown as box 

plots. Each box shows the 25th and 75th percentiles. Lines outside the boxes show the 
lowest and the highest values. Lines inside the boxes show the median. 
 

cumulative data from trauma patients (n = 10) or
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Figure 5. Ca2+ influx into RBC after addition of trauma sera. A, Time course of serum-
induced changes in intracellular Ca2+ of trauma patients (Tr4 and Tr5) or a healthy 
control (N3) are shown. Arrow indicates the time when trauma or control sera were added 
to RBC preloaded with Fluo-4 AM, 1 min after start of measurement by flow cytometry. 
Vertical axis indicates relative intracellular Ca2+ concentration, which is estimated from 
mean fluorescence intensity of Fluo-4 AM. Representative data are shown. B, Cumulative 

ty of Fluo-4 AM before 
nd after adding the serum. Horizontal lines indicate the median. 

. Trauma serum induced the production of NO in RBCs from healthy donors 
 

results of Ca2+ influx in RBCs to which trauma sera (n = 9) or normal sera (n = 4) were 
added. Vertical axis shows the ratio of mean fluorescence intensi
a
 
  
6
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Figure 6. Nitric oxide (NO) production from RBCs induced by trauma serum. A, NO 
production from healthy RBCs (type O, Rh negative) measured by flow cytometry after 
incubation with sera from trauma patients or healthy donors by using DAF-FM diacetate. 
Representative data are shown. B, NO production from RBCs was expressed as mean 
fluorescence intensity of DAF-FM diacetate fluorescence, and cumulative data from 
trauma patients (n = 12) or healthy donors (n = 8) are shown as box plots. Each box 
shows the 25th and 75th percentiles. Lines outside the boxes show the lowest and the 
highest values. Lines inside the boxes show the median. C, Heat inactivation of 
complement in sera from trauma patients eliminates their ability to trigger NO 
production. To inactivate complement, sera were incubated 55°C for 30 min. RBCs were 
incubated with sera from trauma patients before or after inactivation of complement. 
Individual sera with/without inactivation of complement are shown. Straight lines are 
used to connect individual points to help visualize how different they are in each sample 
(n = 4). 

Reportable Outcome 

Manuscript published. 

C4d Deposits on the Surface of Red Blood Cells in Trauma Patients and Interferes 
with their Function.  
Muroya T, Kannan L, Ghiran IC, Shevkoplyas SS, Paz Z, Tsokos M, Lucca JJ, Shapiro 
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NI, Tsokos GC.  
Critical Care Medicine. 2014 Jan 20. 

Conclusion 

We conclude that C4d decorates the surface of RBC and possibly limits their ability to 
deform and pass through capillary-size microchannels and increases the production of 
NO. Thus it may contribute to trauma-associated morbidity and mortality. As a next step, 
we plan to conduct a prospective study with larger population, which includes clinically 
homogenous trauma patients compared to matched controls. We believe that our present 
and future findings might suggest modalities that limit complement activation in trauma 
patients to be considered for clinical trials.   
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